In this article, we developed a thermodynamically consistent non-local microcracking model for quasi-brittle materials with application to concrete. The model is implemented using a novel graph-based finite element analysis (GraFEA) approach that allows for (i) the probabilistic modeling of the growth and coalescence of microcracks, (ii) the modeling of crack closure using a kinematics-based approach, and (iii) the modeling of rate effects on microcracking. The developed theoretical model and its computational framework is also implemented into the dynamics-based Abaqus/Explicit finite element program through a vectorized user-material subroutine interface. We further demonstrate the procedure for obtaining the parameters (including the non-local intrinsic material length scale, which governs the fracture process) and consequently validate the simulations with independent experimental results.