The dipole moment formalism for the optical response of finite electronic structures breaks down in infinite ones, for which a momentum-based method is better suited. Focusing on simple chain structures, we compare the linear and nonlinear optical response of finite and infinite one-dimensional semiconductors. This comparison is then extended to cases including strong electro-static fields breaking translational invariance. For large electro-static fields, highly non-perturbative Franz-Keldysh (FK) features are observed in both linear and nonlinear spectra. It is demonstrated that dipole and momentum formalisms agree in the limit of large structures provided the intraband momentum contributions are carefully treated. This convergence is established even in the presence of non-perturbative electro-static fields.