We consider posterior consistency for a Markov model with a novel class of nonparametric prior. In this model, the transition density is parameterized via a mixing distribution function. Therefore, the Wasserstein distance between mixing measures can be used to construct neighborhoods of a transition density. The Wasserstein distance is sufficiently strong, e.g. if the mixing distributions are compactly supported, it dominates the sup-L1 metric. We provide sufficient conditions for posterior consistency with respect to the Wasserstein metric provided that the true transition density is also parametrized via a mixing distribution. In general, when it is not be parameterized by a mixing distribution, we show the posterior distribution is consistent with respect to the average L1 metric. Also, we provide a prior whose support is sufficiently large to contain most smooth transition densities.