Purpose
There remains a high unmet need for therapies with new mechanisms of action to achieve reperfusion of ischemic retina in diabetic retinopathy. We examined whether a novel frizzled class receptor 4 (FZD4) agonist could promote regeneration of functional blood vessels in animal models of retinopathy.
Methods
We developed a novel Norrin mimetic (SZN-413-p) targeting FZD4 and low-density lipoprotein receptor-related protein 5 (LRP5) and examined its effect on retinal and brain endothelial cells in vitro. SZN-413-p was subsequently humanized, resulting in the therapeutic candidate SZN-413, and was examined in animal models of retinopathy. In an oxygen-induced retinopathy mouse model, avascular and neovascularization areas were measured. Furthermore, in a vascular endothelial growth factor (VEGF)-induced retinal vascular leakage rabbit model, the impact on vascular leakage by SZN-413 was examined by measuring fluorescein leakage.
Results
SZN-413-p induced Wnt/β-catenin signaling and upregulated blood–brain barrier/blood–retina barrier gene expressions in endothelial cells. In the oxygen-induced retinopathy mouse model, SZN-413-p and SZN-413 significantly reduced the neovascularization area size (
P
< 0.001) to a level comparable to, or better than the positive control aflibercept. Both agonists also showed a reduction in avascular area size compared to vehicle (
P
< 0.001) and aflibercept groups (
P
< 0.05 and
P
< 0.01 for SZN-413-p and SZN-413, respectively). In the VEGF-induced retinal vascular leakage rabbit model, SZN-413 reduced retinal vascular leakage by ∼80%, compared to the vehicle-treated group (
P
< 0.01).
Conclusions
Reduction of neovascular tufts and avascular areas and of VEGF-driven retinal vascular leakage suggests that SZN-413 can simultaneously address retinal non-perfusion and vascular leakage.
Translational Relevance
FZD4 signaling modulation by SZN-413 is a novel mechanism of action that can offer a new therapeutic strategy for diabetic retinopathy.