2018
DOI: 10.1063/1.5020482
|View full text |Cite
|
Sign up to set email alerts
|

A note on elliptic biquaternions

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4

Citation Types

0
10
0

Year Published

2018
2018
2023
2023

Publication Types

Select...
4
1

Relationship

1
4

Authors

Journals

citations
Cited by 8 publications
(10 citation statements)
references
References 9 publications
0
10
0
Order By: Relevance
“…Theorem (Özen and Tosun) Let Q=A0+A1boldi+A2boldj+A3boldkHCp be given where QCp. If A12+A22+A320, in this case, QA0+γ()Qboldi where the number γ()Q is an elliptic number that satisfies the equality γ2()Q=A12+A22+A32. If A12+A22+A32=0, in this case, QA012boldj+12||pIboldk. …”
Section: Preliminariesmentioning
confidence: 99%
See 4 more Smart Citations
“…Theorem (Özen and Tosun) Let Q=A0+A1boldi+A2boldj+A3boldkHCp be given where QCp. If A12+A22+A320, in this case, QA0+γ()Qboldi where the number γ()Q is an elliptic number that satisfies the equality γ2()Q=A12+A22+A32. If A12+A22+A32=0, in this case, QA012boldj+12||pIboldk. …”
Section: Preliminariesmentioning
confidence: 99%
“…Lastly, we recall some necessary properties of elliptic matrices. For more details, see Özen and Tosun and Kösal …”
Section: Preliminariesmentioning
confidence: 99%
See 3 more Smart Citations