“…To obtain the homogenized problem we choose, in the weak form(8), the test function v (x) c (t) = v 1 (x) c 1 (t) , where v 1 ∈ H 1 0 (Ω) and c 1 ∈ D(0, T ), giving ΩT −ε q u ε (x, t) v 1 (x) ∂ t c 1 (t) + a x ε , t ε r ∇u ε (x, t) · ∇v 1 (x) c 1 (t) dxdt = ΩT f (x, t) v 1 (x) c 1 (t) dxdt.and applying the Variational lemma we get S −u 1 (x, t, y, s) ∂ s c 2 (s) ds = 0 a.e. in Ω T × Y , which implies that u 1 is independent of s. Now, to find the local problem, we choose the test function v (x) c (t) = εv 1 (x) v 2 x ε c 1 (t) ,…”