We study the
$L^p$
-boundedness of the Berezin transform on the generalised Hartogs triangles which are defined by
$$ \begin{align*}H_k:=\{(z, w)\in\mathbb C^n\times\mathbb C: |z_1|^2+\cdots+|z_n|^2<|w|^{2k}<1\},\end{align*} $$
where
$z=(z_1, \ldots , z_n)$
and
$k\in \mathbb N$
. We prove that the Berezin transform is bounded on
$L^p(H_k)$
if and only if
$p>nk+1$
.