We state a fundamental correspondence between geodesics on stationary spacetimes and the equations of classical particles on Riemannian manifolds, accelerated by a potential and a magnetic field. By variational methods, we prove some existence and multiplicity theorems for fixed energy solutions (joining two points or periodic) of the above described Riemannian equation. As a consequence, we obtain existence and multiplicity results for geodesics with fixed energy, connecting a point to a line or periodic trajectories, in (standard) stationary spacetimes.