In the present work, the release of tracer location on the global mixing time in an agitated ladle furnace by gas bottom injection was analyzed. Then, a numerical multiphasic steel-slag-argon-air system of a prototype with a capacity of 150 tons was carried out. The simulation was validated by using a physical model with a 1/6 geometric scale using colorant, KCl dispersion measurements techniques and open slag eye opening. Four different tracer addition locations were strategically established to study the influence of tracer releasing location on chemical homogenization. From the results, it was found that the measurement of mixing times varies according to the location of the tracer addition, which to a greater extent is conditioned by the convective currents that at some extent were related to turbulent viscosity.