In this paper, we consider the Diophantine equation in the title, where [Formula: see text] are distinct odd prime numbers and [Formula: see text] are natural numbers. We present many results given conditions for the existence of integers solutions for this equation, according to the values of [Formula: see text] and [Formula: see text]. Our methods are elementary in nature and are based upon the study of the primitive divisors of certain Lucas sequences as well as the factorization of certain polynomials.