2008
DOI: 10.1007/s12220-008-9046-7
|View full text |Cite
|
Sign up to set email alerts
|

A Note on the Infimum of Energy of Unit Vector Fields on a Compact Riemannian Manifold

Abstract: Our main result in this paper establishes that if G is a compact Lie subgroup of the isometry group of a compact Riemannian manifold M acting with cohomogeneity one in M and either G has no singular orbits or the singular orbits of G have dimension at most n − 3, then the unit vector field N orthogonal to the principal orbits of G is weakly smooth and is a critical point of the energy functional acting on the unit normal vector fields of M. A formula for the energy of N in terms of the of integral of the Ricci… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2012
2012
2012
2012

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 8 publications
0
0
0
Order By: Relevance