A long-standing conjecture due to R. Fox states that the coefficients of the Alexander polynomial of an alternating knot exhibit a trapezoidal pattern. In other words, these coefficients increase, stabilize, then decrease in a symmetric way. A stronger version of this conjecture states that these coefficients form a log-concave sequence. This conjecture has been recently highlighted by J. Huh as one of the most interesting problems on log-concavity of sequences. In this expository paper, we shall review the various versions of the conjecture, highlight settled cases and outline some future directions.