2020
DOI: 10.4153/s000843952000082x
|View full text |Cite
|
Sign up to set email alerts
|

A note on the phase retrieval of holomorphic functions

Abstract: We prove that if f and g are holomorphic functions on an open connected domain, with the same moduli on two intersecting segments, then $f=g$ up to the multiplication of a unimodular constant, provided the segments make an angle that is an irrational multiple of $\pi $ . We also prove that if f and g are functions in the Nevanlinna class, and if $|f|=|g|$ on the unit circle and on a circle inside the unit disc, then … Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 11 publications
0
0
0
Order By: Relevance