ABSTRACT. Let ζ n (z) := n k=1 1 k z , z = x + iy, be the nth partial sum of the Riemann zeta function and a ζ n (z) := inf { z : ζ n (z) = 0}. In this paper we prove that a ζ n (z) = − log 2 log( n−1 n−2 ) + Δ n , n > 2, with lim sup n→∞ |Δ n | ≤ log 2.2010 Mathematics Subject Classification 30AXX, 30D20. Key words: Zeros of the partial sums of the Riemann zeta function.