In the realm of digital image security, this study presents an innovative encryption methodology for color images, significantly advancing the traditional Vigenere cipher through the integration of two extensive pseudorandom substitution matrices. These matrices are derived from chaotic maps widely recognized for their cryptographic utility, specifically the logistic map and the skew tent map, chosen for their straightforward implementation capabilities in encryption systems and their high sensitivity to initial conditions. The process commences with the vectorization of the original image and the computation of initial values to alter the starting pixel's value, thereby initiating the encryption sequence. A novel aspect of this method is the introduction of a Vigenere mechanism that employs dynamic pseudorandom affine functions at the pixel level, enhancing the cipher's robustness. Subsequently, a comprehensive permutation strategy is applied to bolster the vector's integrity and elevate the temporal complexity against potential cryptographic attacks. Through simulations conducted on a varied collection of images, encompassing different sizes and formats, the proposed encryption technique demonstrates formidable resilience against both brute-force and differential statistical attacks, thereby affirming its efficacy and security in safeguarding digital imagery.