2013 21st Iranian Conference on Electrical Engineering (ICEE) 2013
DOI: 10.1109/iraniancee.2013.6599547
|View full text |Cite
|
Sign up to set email alerts
|

A novel adaptive agent-based algorithm to find mixed Nash equilibrium in static games

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
1
0
1

Year Published

2015
2015
2017
2017

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 13 publications
0
1
0
1
Order By: Relevance
“…Some efforts are made to improve the practice feasibility of a mixed Nash equilibrium, for instance, doing economical experiment(2007, Bloomfield) [4] , exploring the relationship between the decision analysis and game theory (2007, Binsbergen) [5] , using diagrammatic methods for two-person non-zero-sum game (2008, Magirou) [6] , by decision trees (2013,Cobb) [3] ,the immune algorithm (2010, Cheheltaniand Ebadzadeh) [7] ,honey bees foraging optimization (2011, Navidi, Ayanzadeh and Mousavi ) [8] ,adaptive agent-based algorithm (2013, Farimani, Yektay and Mashhadi) [9] , heuristic-meta algorithm (2014, Mohtadi and Nogondarian) [10] .These heuristic or evolutionary methods are helpful to compute the mixed Nash equilibria faster by computer. But it is still hard for people randomize their mixed Nash equilibrium strategies.…”
Section: Introductionmentioning
confidence: 99%
“…Some efforts are made to improve the practice feasibility of a mixed Nash equilibrium, for instance, doing economical experiment(2007, Bloomfield) [4] , exploring the relationship between the decision analysis and game theory (2007, Binsbergen) [5] , using diagrammatic methods for two-person non-zero-sum game (2008, Magirou) [6] , by decision trees (2013,Cobb) [3] ,the immune algorithm (2010, Cheheltaniand Ebadzadeh) [7] ,honey bees foraging optimization (2011, Navidi, Ayanzadeh and Mousavi ) [8] ,adaptive agent-based algorithm (2013, Farimani, Yektay and Mashhadi) [9] , heuristic-meta algorithm (2014, Mohtadi and Nogondarian) [10] .These heuristic or evolutionary methods are helpful to compute the mixed Nash equilibria faster by computer. But it is still hard for people randomize their mixed Nash equilibrium strategies.…”
Section: Introductionmentioning
confidence: 99%
“…Agentes inteligentes são sistemas capazes de, autonomamente, perceber e modificar o ambiente no qual estão inseridos, buscando alcançar o melhor resultado, ou, quando existe incerteza, o melhor resultado esperado [1]. A ideia inicial de agentes de software foi proposta em meados de 1950 por John MacCarthy [2], e, desde então, foi possível observar o crescimento da sua aplicação nas mais diversas áreas, tais como Smart Grid [3], comércio eletrônico [4], jogos [5], sistemas de recomendações [6], sistemas de detecção de intrusão [7], controle de tráfego [8], controle de tráfego aéreo [9], educação a distância [10], monitoramento de pacientes [11], robótica [12], entre outras. Mesmo com toda essa ampla aplicabilidade, testar a eficiência de sistemas baseados em agentes não tem sido uma tarefa fácil.…”
Section: Introductionunclassified