The proliferation of new wireless communication technologies and services led to a boost in the number of different available communication standards and spectrum usage. As the electromagnetic spectrum is a finite resource, concerns about its efficient management became an important aspect. Given this scenario, Cognitive Radio emerged as a solution for future wireless communication devices, by supporting multiple standards and improving spectrum utilization through opportunistic wireless access. The purpose of this research is to study and design a reconfigurable FPGA-based NC-OFDM baseband processor meeting the requirements of next generation Cognitive Radio devices in terms of multi-carrier, multi-standard communications and spectral agility in changing environments. The processor will be the core of a flexible NC-OFDM transceiver for future 5G communications with support for spectrum aggregation and runtime selection of modulation schemes and active sub-carriers. The goal is to achieve higher levels of system adaptability, upgradeability and efficiency, by employing dynamic partial reconfiguration of FPGAs.