The AC/DC hybrid microgrid has a large-scale and complex control process. It is of great significance and value to design a reasonable power coordination control strategy to maintain the power balance of the system. Based on hierarchical control, this paper designs a reasonable power coordination control strategy for AC/DC hybrid microgrid. For lower control, this paper designs a variety of control modes for each converter in different application scenarios. For the higher control, this paper analyzes the working mode of the system and designs the power coordination control strategy under the grid-connected and isolated island mode. In grid-connected operation, the DC bus voltage can be stabilized by adjusting the operation mode of the DC energy storage and the on-off of the secondary load. In isolated island operation, the DC sub-microgrid is the main microgrid, and the DC energy storage is the main power regulating equipment. This is based on the principle of “energy is in short supply in the system, DC energy storage finally discharge, energy supply exceeds demand in the system, DC energy storage gives priority to charging” of DC energy storage. By adjusting the control strategy of the micro-source, the reference power, and the on-off of the secondary load, the overall power balance is maintained. The Matlab/Simulink simulation software was used to build the AC/DC hybrid microgrid simulation model, which verified the effectiveness and stability of the proposed power coordination control strategy under various operating conditions.