In recent times, the massive expansion of the Internet of Things (IoT) has transformed various facets of everyday life and industries. The compelling cause behind the widespread adoption of IoT is the increasing availability of affordable, compact, and energyefficient computing devices. While these devices offer significant benefits, they also raise substantial security and privacy challenges. Consequently, safeguarding IoT networks and devices is imperative. To raise a robust security system for IoT networks, it is crucial to have an efficient anomaly-based intrusion detection system. In this study, we introduce a meticulous methodology to create IoT-specific datasets. Utilizing the Contiki-OS Cooja simulator, we generate datasets representative of real-world IoT security threats, including sinkholes, version numbers, and flooding attacks. We then evaluate the performance of a Convolutional Neural Network paired with an Aquila Optimizer (CNN-AO) using these self-generated datasets, by employing metrics such as accuracy, precision, recall, F1-score, sensitivity, specificity, and false alarm rate. Additionally, we compare the effectiveness of CNN and LSTM models in distinguishing between benign and malicious traffic. Our findings demonstrate that the CNN-AO model surpasses other models in accurately classifying normal and malicious traffic with an accuracy of 99.22, 99.77, and 99.55% for our self-generated malicious datasets based on sinkhole attack, version number attack, and flooding attack respectively. This novel approach not only establishes a solid foundation for future investigations in this domain but also provides valuable insights into enhancing IoT system security. In this study, we contribute to the field by introducing a robust methodology for IoTspecific dataset generation and evaluating a cutting-edge CNN-AO model for intrusion detection. Furthermore, it is crucial to note that this research was conducted with utmost ethical consideration. Ethical guidelines and data privacy concerns were meticulously addressed during the generation of IoT datasets and the simulation of real-world attack scenarios, ensuring the responsible conduct of our study.