In autonomous driving, Frequency-Modulated Continuous-Wave (FMCW) radar has gained widespread acceptance for target detection due to its resilience and dependability under diverse weather and illumination circumstances. Although deep learning radar target identification models have seen fast improvement, there is a lack of research on their susceptibility to adversarial attacks. Various spoofing attack techniques have been suggested to target radar sensors by deliberately sending certain signals through specialized devices. In this paper, we proposed a new adversarial deep learning network for spoofing attacks in radar target detection (RTD). Multi-level adversarial attack prevention using deep learning is designed for the coherence pulse deep feature map from DAALnet and Range-Doppler (RD) map from TDDLnet. After the discrimination of the attack, optimization of hybrid deep learning (OHDL) integrated with enhanced PSO is used to predict the range and velocity of the target. Simulations are performed to evaluate the sensitivity of AOHDL for different radar environment configurations. RMSE of AOHDL is almost the same as OHDL without attack conditions and it outperforms the earlier RTD implementations.