Phenology reflects the life cycle of vegetation, crucial for monitoring global vegetation diversity, ecosystem stability, and agricultural security. However, there is currently no dataset related to phenology. The 24 solar terms (24STs), based on the Sun's annual motion, reflect the changing seasons, temperature fluctuations, and phenological phenomena. They serve as a vital means to characterize vegetation phenology. This study generate a global Normalized Difference Vegetation Index (NDVI) product based on 24STs using Moderate Resolution Imaging Spectroradiometer (MODIS) on the Google Earth Engine (GEE). The 24STs NDVI dataset adopted the maximum value compositing (MVC) to process the NDVI values between two adjacent 24STs. The product has a spatial resolution of 250 m, covering the period from 2001 to 2022. Comparing with the MOD13Q1, good spatiotemporal consistency between the two datasets was observed, confirming the reliability of the 24STs product. However, the 24STs product holds distinct phenological meanings. This product introduces, for the first time, a vegetation index dataset based on the 24STs, enriching the vegetation index dataset and facilitating further research on phenology.