2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV) 2021
DOI: 10.1109/icicv50876.2021.9388431
|View full text |Cite
|
Sign up to set email alerts
|

A Novel Approach for Credit Card Fraud Detection using Decision Tree and Random Forest Algorithms

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
4
3
1
1

Relationship

0
9

Authors

Journals

citations
Cited by 31 publications
(4 citation statements)
references
References 11 publications
0
3
0
1
Order By: Relevance
“…Penelitian terkait deteksi transaksi fraud kartu kredit telah dilakukan oleh beberapa peneliti dengan melakukan pengembangan model menggunakan algoritma berbasis supervised learning seperti SVM, Naïve Bayes, Logistic Regression, Decision Tree, KNN, Random Forest, GBM, LightGBM, XGBoost, AdaBoost, serta CatBoost (Taha and Malebary, 2020) (Dileep, Navaneeth and Abhishek, 2021) (Sumanth et al, 2022) (Alfaiz and Fati, 2022) (Madhurya et al, 2022). Pendekatan untuk mengatasi data tidak seimbang pernah dilakukan dengan teknik resampling seperti Random Oversampling, SMOTE dan ADASYN oleh beberapa peneliti (Gupta et al, 2023) (Moreira et al, 2022) (Berkmans and Karthick, 2022) (Lu et al, 2020).…”
Section: Pendahuluanunclassified
“…Penelitian terkait deteksi transaksi fraud kartu kredit telah dilakukan oleh beberapa peneliti dengan melakukan pengembangan model menggunakan algoritma berbasis supervised learning seperti SVM, Naïve Bayes, Logistic Regression, Decision Tree, KNN, Random Forest, GBM, LightGBM, XGBoost, AdaBoost, serta CatBoost (Taha and Malebary, 2020) (Dileep, Navaneeth and Abhishek, 2021) (Sumanth et al, 2022) (Alfaiz and Fati, 2022) (Madhurya et al, 2022). Pendekatan untuk mengatasi data tidak seimbang pernah dilakukan dengan teknik resampling seperti Random Oversampling, SMOTE dan ADASYN oleh beberapa peneliti (Gupta et al, 2023) (Moreira et al, 2022) (Berkmans and Karthick, 2022) (Lu et al, 2020).…”
Section: Pendahuluanunclassified
“…• Logistic Regression [8, 10-12, 22, 28, 29] • Support Vector Machines [21,22,27,29,30] • Neural Networks [1,3,5,13,18,26,27,31] • Decision Trees [6,7,11,18,22,28] • Random Forests [6-8, 11, 12, 15, 21, 22, 28] • Naive Bayes [11,[27][28][29] • K-Nearest Neighbors [11,22,29] • Isolation Forest [13,22,23] • Local Outlier Factor [10,13,23] Random Forests and Neural Networks generally produced good results, however, some researchers reported that Neural Networks took a long time to train. In general, the best suited algorithm depends on the properties of the data at hand, hence, the reason for many researchers taking the route of comparing the algorithms to determine the one that was most appropriate.…”
Section: Related Workmentioning
confidence: 99%
“…For credit card fraud detection, a Decision tree and random forest are used [17]. The author has used public data as sample data to test the model's efficiency.…”
Section: Related Workmentioning
confidence: 99%