Recent computational photography techniques play a significant role to overcome the limitation of standard digital cameras for handling wide dynamic range of real-world scenes contain brightly and poorly illuminated areas. In many of such techniques [1,2,3], it is often desirable to fuse details from images captured at different exposure settings. One such technique is High Dynamic Range (HDR) imaging that provides a solution to recover radiance maps from photographs taken with conventional imaging equipment. One of the long-standing challenges in HDR imaging technology is the limited Dynamic Range (DR) of conventional display devices and printing technology. Due to which these devices are unable to reproduce full DR. Although DR can be reduced by using a tone-mapping, but this comes at an unavoidable trade-off with increased computational cost. Therefore, it is desirable to maximize information content of the synthesized scene from a set of multi-exposure images without computing HDR radiance map and tonemapping. This thesis attempts to develop a novel detail enhanced multi-exposure image fusion approach, which exploits the edge preserving capability of adaptive filters.