Background: Brain connectome research based on graph theoretical analysis shows that small-world topological properties play an important role in the structural and functional alterations observed in patients with psychiatric disorders. However, the reported global topological alterations in small-world properties are controversial, are not consistently conceptualized according to agreed-upon criteria, and are not critically examined for consistent alterations in patients with each major psychiatric disorder. Methods: Based on a comprehensive PubMed search, we systematically reviewed studies using noninvasive neuroimaging data and graph theoretical approaches for 6 major psychiatric disorders: schizophrenia, major depressive disorder (MDD), attention-deficit/ hyperactivity disorder (ADHD), bipolar disorder (BD), obsessive-compulsive disorder (OCD) and posttraumatic stress disorder (PTSD). Here, we describe the main patterns of altered small-world properties and then systematically review the evidence for these alterations in the structural and functional connectome in patients with these disorders. Results: We selected 40 studies of schizophrenia, 33 studies of MDD, 5 studies of ADHD, 5 studies of BD, 7 studies of OCD and 5 studies of PTSD. The following 4 patterns of altered small-world properties are defined from the perspectives of segregation and integration: "regularization," "randomization," "stronger small-worldization" and "weaker small-worldization." Although more differences than similarities are noted in patients with these disorders, a prominent trend is the structural regularization versus functional randomization in patients with schizophrenia. Limitations: Differences in demographic and clinical characteristics, preprocessing steps and analytical methods can produce contradictory results, increasing the difficulty of integrating results across different studies. Conclusion: Four psychoradiological patterns of altered small-world properties are proposed. The analysis of altered smallworld properties may provide novel insights into the pathophysiological mechanisms underlying psychiatric disorders from a connectomic perspective. In future connectome studies, the global network measures of both segregation and integration should be calculated to fully evaluate altered small-world properties in patients with a particular disease.