2017
DOI: 10.1002/bab.1541
|View full text |Cite
|
Sign up to set email alerts
|

A novel approach for osteocalcin detection by competitive ELISA using porous silicon as a substrate

Abstract: In this study, porous silicon (PSi) was utilized instead of prevalent polystyrene platforms, and its capability in biomolecule screening was examined. Here, two types of porous structure, macroporous silicon (Macro-PSi) and mesoporous silicon (Meso-PSi), were produced on silicon wafers by electrochemical etching using different electrolytes. Moreover, both kinds of fresh and oxidized PSi samples were investigated. Next, osteocalcin as a biomarker of the bone formation process was used as a model biomarker, and… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0

Year Published

2019
2019
2025
2025

Publication Types

Select...
4
1
1

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(3 citation statements)
references
References 46 publications
0
3
0
Order By: Relevance
“…As mentioned below, biofunctionalization plays a very important role in bioselective layer evolution and allows for the binding of organic molecules to a non-organic nano-Si surface without unspecific interaction. Currently, a number of biofunctionalization protocols have been proposed: silanization [3,19,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67], aminosilanization [68,69,70], direct immobilization [16,22,71,72], enzyme [18] or peptide [73] treatment, phospholipid bilayers formation [74], hydrosilylation treated by N-Hydroxysuccinimide and 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (NHS/EDC) [75,76,77] or resazurin [78], and polymer synthesis [79]. However, the most common technique is silanization, due to the possibility of controlling the thickness of the(3-Aminopropyl)triethoxysilane (APTES) layer as well as using different cross-linking agents (glutaraldehyde, NHS/EDS) [18,80].…”
Section: (Bio)sensors Based On Psi Sinws Sinps and Their Composimentioning
confidence: 99%
See 2 more Smart Citations
“…As mentioned below, biofunctionalization plays a very important role in bioselective layer evolution and allows for the binding of organic molecules to a non-organic nano-Si surface without unspecific interaction. Currently, a number of biofunctionalization protocols have been proposed: silanization [3,19,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67], aminosilanization [68,69,70], direct immobilization [16,22,71,72], enzyme [18] or peptide [73] treatment, phospholipid bilayers formation [74], hydrosilylation treated by N-Hydroxysuccinimide and 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (NHS/EDC) [75,76,77] or resazurin [78], and polymer synthesis [79]. However, the most common technique is silanization, due to the possibility of controlling the thickness of the(3-Aminopropyl)triethoxysilane (APTES) layer as well as using different cross-linking agents (glutaraldehyde, NHS/EDS) [18,80].…”
Section: (Bio)sensors Based On Psi Sinws Sinps and Their Composimentioning
confidence: 99%
“…Another nano-Si optical response suitable for (bio)molecule detection is reflectance or other optical parameters related to reflectance [22,48,53,55,56,57,58,62,65,67,68,70,71,74,76,85,86,87,88,89,90,91,92,93,94,95,96]. Generally, the (bio)sensor technique based on reflectance response can be performed via reflective index (RI) [71] or optical density [16] (OD) measurements in the initial state and after the addition of the analyte. The changes in RI and OD caused by analyte-transducer surface interaction can be processed and used as the effective (bio)sensor signal.…”
Section: (Bio)sensors Based On Psi Sinws Sinps and Their Composimentioning
confidence: 99%
See 1 more Smart Citation