A growing societal interest exists in the application of lidar technology to monitor forest resource information and forestry management activities. This study examined the possibility of estimating the diameter at breast height (DBH) of two tree species, Pinus koraiensis (PK) and Larix kaempferi (LK), by varying the number of terrestrial laser scanning (TLS) scans (1, 3, 5, 7, and 9) and DBH estimation methods (circle fitting [CF], ellipse fitting [EF], circle fitting with RANSAC [RCF], and ellipse fitting with RANSAC [REF]). This study evaluates the combination that yields the highest estimation accuracy. The results showed that for PK, the lowest RMSE of 0.97 was achieved when REF was applied to the data from nine scans after noise removal. For LK, the lowest RMSE of 1.03 was observed when applying CF to the data from seven scans after noise removal. Furthermore, ANOVA revealed no significant difference in the estimated DBH from nine scans when more than three scans were used for CF and RCF and more than five for EF and REF. These results are expected to be useful in establishing efficient and accurate DBH estimation plans using TLS for forest resource monitoring.