In this paper, we propose a novel fuzzy expectation maximization (FEM) based Takagi-Sugeno (T-S) fuzzy particle filtering (FEMTS-PF) algorithm for a passive sensor system. In order to incorporate target spatial-temporal information into particle filtering, we introduce a T-S fuzzy modeling algorithm, in which an improved FEM approach is proposed to adaptively identify the premise parameters, and the model probability is adjusted by the premise membership functions. In the proposed FEM, the fuzzy parameter is derived by the fuzzy C-regressive model clustering method based on entropy and spatial-temporal characteristics, which can avoid the subjective influence caused by the artificial setting of the initial value when compared to the traditional FEM. Furthermore, using the proposed T-S fuzzy model, the algorithm samples particles, which can effectively reduce the particle degradation phenomenon and the parallel filtering, can realize the real-time performance of the algorithm. Finally, the results of the proposed algorithm are evaluated and compared to several existing filtering algorithms through a series of Monte Carlo simulations. The simulation results demonstrate that the proposed algorithm is more precise, robust and that it even has a faster convergence rate than the interacting multiple model unscented Kalman filter (IMMUKF), interacting multiple model extended Kalman filter (IMMEKF) and interacting multiple model Rao-Blackwellized particle filter (IMMRBPF).