Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
China ranks first in apple production worldwide, making the assessment of apple quality a critical factor in agriculture. Sucrose concentration (SC) is a key factor influencing the flavor and ripeness of apples, serving as an important quality indicator. Nondestructive SC detection has significant practical value. Currently, SC is mainly measured using handheld refractometers, hydrometers, electronic tongues, and saccharimeter analyses, which are not only time-consuming and labor-intensive but also destructive to the sample. Therefore, a rapid nondestructive method is essential. The fluorescence hyperspectral imaging system (FHIS) is a tool for nondestructive detection. Upon excitation by the fluorescent light source, apples displayed distinct fluorescence characteristics within the 440–530 nm and 680–780 nm wavelength ranges, enabling the FHIS to detect SC. This study used FHIS combined with machine learning (ML) to predict SC at the apple’s equatorial position. Primary features were extracted using variable importance projection (VIP), the successive projection algorithm (SPA), and extreme gradient boosting (XGBoost). Secondary feature extraction was also conducted. Models like gradient boosting decision tree (GBDT), random forest (RF), and LightGBM were used to predict SC. VN-SPA + VIP-LightGBM achieved the highest accuracy, with Rp2, RMSEp, and RPD reaching 0.9074, 0.4656, and 3.2877, respectively. These results underscore the efficacy of FHIS in predicting apple SC, highlighting its potential for application in nondestructive quality assessment within the agricultural sector.
China ranks first in apple production worldwide, making the assessment of apple quality a critical factor in agriculture. Sucrose concentration (SC) is a key factor influencing the flavor and ripeness of apples, serving as an important quality indicator. Nondestructive SC detection has significant practical value. Currently, SC is mainly measured using handheld refractometers, hydrometers, electronic tongues, and saccharimeter analyses, which are not only time-consuming and labor-intensive but also destructive to the sample. Therefore, a rapid nondestructive method is essential. The fluorescence hyperspectral imaging system (FHIS) is a tool for nondestructive detection. Upon excitation by the fluorescent light source, apples displayed distinct fluorescence characteristics within the 440–530 nm and 680–780 nm wavelength ranges, enabling the FHIS to detect SC. This study used FHIS combined with machine learning (ML) to predict SC at the apple’s equatorial position. Primary features were extracted using variable importance projection (VIP), the successive projection algorithm (SPA), and extreme gradient boosting (XGBoost). Secondary feature extraction was also conducted. Models like gradient boosting decision tree (GBDT), random forest (RF), and LightGBM were used to predict SC. VN-SPA + VIP-LightGBM achieved the highest accuracy, with Rp2, RMSEp, and RPD reaching 0.9074, 0.4656, and 3.2877, respectively. These results underscore the efficacy of FHIS in predicting apple SC, highlighting its potential for application in nondestructive quality assessment within the agricultural sector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.