Nowadays, the transportation problem is a multiobjective decision-making problem. It involves deciding to determine the ideal transportation setup that matches the decision maker’s preferences while taking into account competing objectives/criteria such as transportation cost, transportation time, and environmental and social concerns. This study presents a general framework of the multiobjective fractional transportation problem (MOFTP) to deal with such complex scenarios. This paper’s major goal is to propose a solution methodology to solve the MOFTP based on a neutrosophic goal programming (NGP) approach. By obtaining the optimal compromise solution using three memberships, namely, truth membership, indeterminacy membership, and falsity membership, the suggested technique gives a novel insight into solving the MOFTP. A real-world problem such as selling wind turbine blades’ problem and a numerical example are used to demonstrate the efficacy and superiority of the proposed method.