Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Purpose Generally, the user requires customized information reflecting his/her current needs and interests that are stored in his/her profile. There are many sources which may provide beneficial information to enrich the user’s interests such as his/her social network for recommendation purposes. The proposed approach rests basically on predicting the reliability of the users’ profiles which may contain conflictual interests. The paper aims to discuss this issue. Design/methodology/approach This approach handles conflicts by detecting the reliability of neighbors’ profiles of a user. The authors consider that these profiles are dependent on one another as they may contain interests that are enriched from non-reliable profiles. The dependency relationship is determined between profiles, each of which contains interests that are structured based on k-means algorithm. This structure takes into consideration not only the evolutionary aspect of interests but also their semantic relationships. Findings The proposed approach was validated in a social-learning context as evaluations were conducted on learners who are members of Moodle e-learning system and Delicious social network. The quality of the created interest structure is assessed. Then, the result of the profile reliability is evaluated. The obtained results are satisfactory. These results could promote recommendation systems as the selection of interests that are considered of enrichment depends on the reliability of the profiles where they are stored. Research limitations/implications Some specific limitations are recorded. As the quality of the created interest structure would evolve in order to improve the profile reliability result. In addition, as Delicious is used as a main data source for the learner’s interest enrichment, it was necessary to obtain interests from other sources, such as e-recruitement systems. Originality/value This research is among the pioneer papers to combine the semantic as well as the hierarchical structure of interests and conflict resolution based on a profile reliability approach.
Purpose Generally, the user requires customized information reflecting his/her current needs and interests that are stored in his/her profile. There are many sources which may provide beneficial information to enrich the user’s interests such as his/her social network for recommendation purposes. The proposed approach rests basically on predicting the reliability of the users’ profiles which may contain conflictual interests. The paper aims to discuss this issue. Design/methodology/approach This approach handles conflicts by detecting the reliability of neighbors’ profiles of a user. The authors consider that these profiles are dependent on one another as they may contain interests that are enriched from non-reliable profiles. The dependency relationship is determined between profiles, each of which contains interests that are structured based on k-means algorithm. This structure takes into consideration not only the evolutionary aspect of interests but also their semantic relationships. Findings The proposed approach was validated in a social-learning context as evaluations were conducted on learners who are members of Moodle e-learning system and Delicious social network. The quality of the created interest structure is assessed. Then, the result of the profile reliability is evaluated. The obtained results are satisfactory. These results could promote recommendation systems as the selection of interests that are considered of enrichment depends on the reliability of the profiles where they are stored. Research limitations/implications Some specific limitations are recorded. As the quality of the created interest structure would evolve in order to improve the profile reliability result. In addition, as Delicious is used as a main data source for the learner’s interest enrichment, it was necessary to obtain interests from other sources, such as e-recruitement systems. Originality/value This research is among the pioneer papers to combine the semantic as well as the hierarchical structure of interests and conflict resolution based on a profile reliability approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.