Introduction
Lower extremity injury is common in the military and can lead to instability, pain, and decreased function. Military service also places high physical demands on service members (SMs). Standard treatment interventions often fail to align with these unique demands. Thus, the goal of the study was to evaluate the effectiveness of a military-specific virtual reality–based rehabilitation (VR) intervention supplemental to standard care (SC) in improving military performance in SMs with lower extremity injuries.
Materials and Methods
As part of an institutional review board–approved randomized control trial, SMs receiving care at an advanced rehabilitation center were randomized to receive either SC or VR in addition to SC (VR+SC). Participants were evaluated before treatment and ∼3 weeks later using a previously developed and validated military-specific assessment. Perceived improvement in physical function was measured using a Global Rating of Change (GROC) questionnaire. A repeated measures ANOVA was used to evaluate the effects of adding VR on the military-specific assessment measures. Linear regression was used to determine the relationship between perceived improvement, measured improvement, and VR volume.
Results
The VR+SC group was able to traverse a greater distance in the assessment following the VR intervention. There was no significant difference in GROC between groups. For the VR+SC group, change in distance completed was not correlated with GROC, but GROC was correlated with VR volume.
Conclusion
VR improved the distance that participants were able to traverse in the assessment. However, the VR+SC group demonstrated a disconnect between their perceived functional improvement as measured by the GROC and functional improvement as measured by the change in the distance completed. Rather, the perceived improvement appears to be more correlated with the volume of VR received. The way in which the treatment progression is structured and communicated may influence how patients perceive their change in physical function.