2024
DOI: 10.3233/jifs-239544
|View full text |Cite
|
Sign up to set email alerts
|

A novel attribute reduction approach using coverage-credibility-based rough decision entropy for interval-valued data

Xia Liu,
Xianyong Zhang,
Jiaxin Chen
et al.

Abstract: Attribute reduction is an important method in data analysis and machine learning, and it usually relies on algebraic and informational measures. However, few existing informational measures have considered the relative information of decision class cardinality, and the fusion application of algebraic and informational measures is also limited, especially in attribute reductions for interval-valued data. In interval-valued decision systems, this paper presents a coverage-credibility-based condition entropy and … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 30 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?