False negatives are recorded in every chemical detection system, but when animals are used as a scent detector, some false negatives can arise as a result of a failure in the link between detection and the trained alert response, or a failure of the handler to identify the positive alert. A false negative response can be critical in certain scenarios, such as searching for a live person or detecting explosives. In this study, we investigated whether the nature of sniffing behavior in trained detection dogs during a controlled scent-detection task differs in response to true positives, true negatives, false positives, and false negatives. A total of 200 videos of 10 working detection dogs were pseudorandomly selected and analyzed frame by frame to quantify sniffing duration and the number of sniffing episodes recorded in a Go/No-Go single scent-detection task using an eight-choice test apparatus. We found that the sniffing duration of true negatives is significantly shorter than false negatives, true positives, and false positives. Furthermore, dogs only ever performed one sniffing episode towards true negatives, but two sniffing episodes commonly occurred in the other situations. These results demonstrate how the nature of sniffing can be used to more effectively assess odor detection by dogs used as biological detection devices.