The airborne pollutants monitoring is an overriding task for humanity given that poor quality of air is a matter of public health, causing issues mainly in the respiratory and cardiovascular systems, specifically the PM10 particle. In this contribution is generated a base model with an Adaptive Neuro Fuzzy Inference System (ANFIS) which is later optimized, using a swarm intelligence technique, named Bacteria Foraging Optimization Algorithm (BFOA). Several experiments were carried with BFOA parameters, tuning them to achieve the best configuration of said parameters that produce an optimized model, demonstrating that way, how the optimization process is influenced by choice of the parameters. parameters individually influences said results.The methodology is basically to use BFOA as optimizer of a base model generated with another technique, ANFIS. The model generated with ANFIS presents some inaccuracies since it is unstable with highly non-linear problems such as the one that is to be modeled in this work. This is why this method was devised where the accuracy of the base model is improved. Once the model optimized with BFOA is generated, it will be compared against that generated with ANFIS.The use of an algorithm that has several agents or swarm intelligence, such as BFOA, gives us the opportunity to find an optimal solution since it involves several, relatively simple agents exploring the study area, thus having a greater probability of finding the optimal global values avoiding the problem of getting stuck in a local solution as it happens with other methods such as neural networks, as well as being robust, flexible systems without central control that issues orders to system agents [1].To better understand what the problem is, it is important to define some concepts, which are presented below.