Abstract:Processing of hyperspectral remote sensing datasets poses challenges in terms of computational expense pertaining to data redundancy. As such, band selection becomes indispensable to address redundancy while preserving the optimal spectral information. This paper proposes a novel architecture using Genetic Algorithm (GA) optimizing technique with Random Forest (RF) classi er for e cient band selection with Hyperspectral Precursor of the Application Mission (PRISMA) dataset. The optimal bands are BLUE (λ=492.69… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.