The PV-Battery hybrid DC microgrid is an important structural form for distributed renewable energy microgrid applications. This paper focuses on improving the access utilization rate of PV-Battery energy and enhancing the access stability of the DC bus voltage. Firstly, based on the voltage droop control method for multi-source access system, the relationship between the power margin of PV-Battery energy and the regulation of DC bus voltage deviation is analyzed. Then, a multivariable T-S fuzzy decision approach is used to design a nonlinear virtual resistance-based voltage droop gain coefficient function, which achieves a highly adaptive coordinated distribution of PV-Battery power as well as supports DC bus voltage stabilization. The T-S fuzzy input variables include the DC bus voltage deviation of the access point, the state of charge of the battery, and the PV sunlight intensity. Finally, the simulation system is built employing MATLAB/Simulink, and the feasibility and effectiveness of the proposed strategy are verified through multischeme simulations.INDEX TERMS renewable energy, DC microgrid, T-S fuzzy control, variable gain, coordinated control.