2022
DOI: 10.1002/sam.11591
|View full text |Cite
|
Sign up to set email alerts
|

A novel Bayesian method for variable selection and estimation in binary quantile regression

Abstract: In this paper, we develop a Bayesian hierarchical model and associated computation strategy for simultaneously conducting parameter estimation and variable selection in binary quantile regression. We specify customary asymmetric Laplace distribution on the error term and assign quantile-dependent priors on the regression coefficients and a binary vector to identify the model configuration. Thanks to the normal-exponential mixture representation of the asymmetric Laplace distribution, we proceed to develop a no… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 35 publications
0
0
0
Order By: Relevance