In this study, various thermal analyses were carried out on a self-developed and commerce-oriented Ag-filled isotropic conductive adhesive (ICA) and its unfilled matrix resin through which glass transition temperature (Tg) and thermal endurance could be quantitatively predicted. An autocatalyzed kinetic model was used to describe the curing reaction, which was proven to be in good consistency with the experimental data. The activation energies for the curing reaction of the ICA and the matrix resin were determined to be 68.1 kJ/mol and 72.9 kJ/mol, respectively, which means that the reaction of the ICA was easier to occur than its unfilled matrix resin. As a result, the time–temperature profile could be calculated for any Tg requested based on the kinetic model of curing and the DiBenedetto equation. Further, the thermal decomposition stability of the ICA and its unfilled matrix resin were also studied. The activation energies for the thermal decomposition of the ICA and the matrix resin were calculated to be 134.1 kJ/mol and 152.7 kJ/mol, respectively, using the Ozawa–Flynn–Wall method, which means that the decomposition of ICA was easier to occur. The service life of the resin system at a specific temperature could therefore be calculated with their activation energy. The addition of micro-scale Ag flakes did not change the curing and decomposition mechanisms by much.