Elemental imaging gives insight into the fundamental chemical makeup of living organisms. Every cell on Earth is comprised of a complex and dynamic mixture of the chemical elements that define structure and function. Many disease states feature a disturbance in elemental homeostasis, and understanding how, and most importantly where, has driven the development of laser ablation−inductively coupled plasma−mass spectrometry (LA-ICP-MS) as the principal elemental imaging technique for biologists. This review provides an outline of ICP-MS technology, laser ablation cell designs, imaging workflows, and methods of quantification. Detailed examples of imaging applications including analyses of cancers, elemental uptake and accumulation, plant bioimaging, nanomaterials in the environment, and exposure science and neuroscience are presented and discussed. Recent incorporation of immunohistochemical workflows for imaging biomolecules, complementary and multimodal imaging techniques, and image processing methods is also reviewed.CONTENTS