C-type lectins are the most diverse and prevalent lectin family in immunity. Particular interest has recently been attracted by the C-type lectin-like receptors on NK cells, which appear to regulate the activation/inhibitory balance of these cells, controlling cytotoxicity and cytokine production. We previously identified a human C-type lectin-like receptor, closely related to both the beta-glucan receptor and the lectin-like receptor for oxidized-LDL, named MICL (myeloid inhibitory C-type lectin-like receptor), which we had shown using chimeric analysis to function as an inhibitory receptor. Using a novel MICL-specific monoclonal antibody, we show here that human MICL is expressed primarily on myeloid cells, including granulocytes, monocytes, macrophages, and dendritic cells. Although MICL was highly N-glycosylated in primary cells, the level of glycosylation was found to vary between cell types. MICL surface expression was down-regulated during inflammatory/activation conditions in vitro, as well as during an in vivo model of acute inflammation, which we characterize here. This suggests that human MICL may be involved in the control of myeloid cell activation during inflammation.
IntroductionIn order to execute their immune (and non-immune) functions, leukocytes must interact with a broad range of endogenous and exogenous ligands and must be able to respond to these interactions appropriately. This requires a wide and flexible, yet specific and regulated, repertoire of cell surface molecules. One large family of such molecules, which are particularly important to immunity, are the C-type lectin and lectin-like receptors. C-type lectin-like receptors were first identified as dimeric molecules on NK cells. On these cells, much attention has been drawn toward their ability to regulate the balance between cellular activation and inhibition, such as cytotoxicity and cytokine production. This is achieved through signalling via intracellular ITIM present in the cytoplasmic tails of these receptors or via ITAM, of which the majority are located in the cytoplasmic tails of associated molecules, such as DAP12. The study of these activationand inhibitory NK cell receptorshas generated a number of interesting hypotheses, including immune privilege [1], the recognition of 'missing self', 'non-self' and 'induced self' [2][3][4][5], as well elucidating the underlying mechanisms of some of the immune responses to viruses [6] and malignancy [7]. Others and we have demonstrated that C-type lectinlike receptors are not restricted to NK cells, but are expressed by many other cell types including myeloid cells [8][9][10]. This introduces the novel concept that the myeloid paralogs of NK cell receptors might govern myeloid cell activation/inhibition in the same manner as those on NK cells. The genes of most C-type lectin-like molecules are located within the 'natural killer complex' (NKC), but many of those expressed by myeloid and other cells are found in a distinct cluster of genes within the NKC [10]. This cluster includes Decti...