Absorption of a photon by a rhodopsin or cone-opsin pigment isomerizes its 11-cis-retinaldehyde (11-cis-RAL) chromophore to all-trans-retinaldehyde (all-trans-RAL), which dissociates after a brief period of activation. Light sensitivity is restored to the resulting apo-opsin when it recombines with another 11-cis-RAL. Conversion of all-trans-RAL to 11-cis-RAL is carried out by an enzyme pathway called the visual cycle in cells of the retinal pigment epithelium. A second visual cycle is present in Müller cells of the retina. The retinol isomerase for this noncanonical pathway is dihydroceramide desaturase (DES1), which catalyzes equilibrium isomerization of retinol. Because 11-cis-retinol (11-cis-ROL) constitutes only a small fraction of total retinols in an equilibrium mixture, a subsequent step involving selective removal of 11-cis-ROL is required to drive synthesis of 11-cis-retinoids for production of visual chromophore. Selective esterification of 11-cis-ROL is one possibility. Crude homogenates of chicken retinas rapidly convert all-trans-ROL to 11-cis-retinyl esters (11-cis-REs) with minimal formation of other retinyl-ester isomers. This enzymatic activity implies the existence of an 11-cis-specific retinyl-ester synthase in Müller cells. Here, we evaluated multifunctional O-acyltransferase (MFAT) as a candidate for this 11-cis-RE-synthase. MFAT exhibited much higher catalytic efficiency as a synthase of 11-cis-REs versus other retinyl-ester isomers. Further, we show that MFAT is expressed in Müller cells. Finally, homogenates of cells coexpressing DES1 and MFAT catalyzed the conversion of all-trans-ROL to 11-cis-RP, similar to what we observed with chicken-retina homogenates. MFAT is therefore an excellent candidate for the retinyl-ester synthase that cooperates with DES1 to drive synthesis of 11-cis-retinoids by mass action.L ight perception begins with the absorption of a photon by an opsin pigment in the membranous outer segment (OS) of a rod or cone photoreceptor cell. The light-absorbing chromophore in most vertebrate opsins is 11-cis-retinaldehyde (11-cis-RAL). Photon capture isomerizes the 11-cis-RAL to all-trans-retinaldehyde (all-trans-RAL), inducing conformational changes in the protein that lead to its active meta-II state. After a brief period of signaling through the transduction cascade, meta II decays to yield apo-opsin and free all-trans-RAL. Light sensitivity is restored to the apo-opsin when it combines with 11-cis-RAL to regenerate the pigment. Conversion of all-trans-RAL to 11-cis-RAL is carried out by a multistep enzyme pathway called the visual cycle, located in cells of the retinal pigment epithelium (RPE) (1, 2). The retinoid isomerase in this pathway is Rpe65, which converts an all-transretinyl ester (all-trans-RE), such as all-trans-retinyl palmitate (alltrans-RP), to 11-cis-retinol (11-cis-ROL) and a free fatty acid (3-5). Retinyl esters are synthesized in RPE cells by lecithin:retinol acyl transferase (LRAT), which transfers a fatty acid from phosphatidylcholine to retinol (6, ...