Internet addiction (IA) has adverse effects on psychophysiological responses, interpersonal relationships, and academic and occupational performance. IA detection has received increasing attention. Although questionnaires enable long-term assessment (over 6 months) and physiological measurements to aid the short-term evaluation (over 2 min) of IA, the lack of algorithms results in an inability to detect IA in real time. A computer-aided system can address this problem. This study used the extended classifier system with continuous realcoded variables (XCSR) for rule-based machine learning to classify IA risk. Chen Internet Addiction Scale (CIAS) items were verified and instantaneous respiratory features of IA were extracted with "don't care" attribute values. The result demonstrated that the XCSR model achieved more than 95% classification accuracy. Using the "don't care" attribute values, the CIAS items were reduced from 26 to 19, and the instantaneous frequency (IF) of respiratory muscle contractions, respiratory wall movements, and body movements were extracted as IA-related features. These findings suggested that the XCSR model is a potentially useful system for detecting IA. The modified 19-item CIAS and IF of respiration can be adopted to assist in the real-time detection of IA and explore the psychophysiological developments of IA users. In future studies, more samples must be collected to validate these findings and instantaneous physiological responses investigated with different window sizes while participants with IA engage in active online gameplay.