This paper aims to integrate vibrational energy harvesters into bridge structures in a holistic fashion that can lessen energy demands for safe bridge operation thus potentially increasing their sustainability. Computationally efficient methodologies, that target the locality of the connection of the harvesters, are utilized to determine optimal harvester frequencies that maximize the total power generation of installed vibrational energy harvesters. Previous findings from the authors indicate that a distributed configuration of harvesters can generate equal or more power than one traditional large harvester when attached to a building structure with total equivalent harvester mass. This paper investigates whether those findings also apply to bridge structures. Results from a cable-stayed bridge model equipped with two or more harvesters along its deck are presented and discussed. Distributed gardens are investigated as a means to integrate the harvester mass with the pre-existing bridge structure. It is found that an equivalent, slightly larger, amount of power is captured by the distributed garden design compared to a single pair of large harvesters placed near the center of the bridge. This performance is very promising as the distributed garden design would enable the enhancement of the structure’s aesthetics while also potentially creating ecological and environmental benefits.