In this article, a miniaturized pentagonal slot antenna (PSA) with a Meander Koch Defected Ground Structures (MK-DGS) and metamaterials (MTM) is proposed for 5 GHz WLAN application. Initially, a Meander Koch DGS was used to lower the resonant frequency of the basic PSA, from 13.1 GHz to 5 GHz. The proposed antenna has been 61.83% miniaturized, close to an electrically small antenna. The performance characteristics of a basic PSA using MK-DGS and MTM superstrate, which improves efficiency, directivity, and peak gain, are also discussed. An antenna with dimensions of 15×15 mm 2 (or) 0.25λ 0 × 0.25λ 0 mm 2 at a thickness of h 1 = 1.6 mm is designed, fabricated, and tested on an FR4 epoxy substrate, and its impact on size reduction performance is evaluated. The gain at 5 GHz is increased from 3.15 to 7.84 dBi by introducing an MTM superstrate made of RT Duriod at a thickness of 1.575 mm above the miniaturized PSA at 17 mm. Test results of the prototype model are corroborated by the simulated results of the proposed model.