Applying sharding protocol to address scalability challenges in alliance chain is popular. However, inevitable cross-shard transactions significantly hamper performance even at low ratios, negating scalability benefits when they dominate as shard scale grows. This article proposes a new sharding protocol suitable for alliance chain that reduces cross-shard transaction impact, improving system performance. It adopts a directed acyclic graph ledger, enabling parallel transaction processing, and employs dynamic transaction confirmation consensus for simplicity. The protocol's sharding process and node score mechanism can deter malicious behavior. Experiments show that compared with mainstream sharding protocols, the protocol performs better when affected by cross-shard transactions. Moreover, its throughput has shown improvement compared to high-performance protocols without cross-shard transactions. This solution suits systems requiring high throughput and reliability, maintaining a stable performance advantage even as cross-shard transactions increase to the usual maximum ratio.