Vitamins comprise a group of organic chemical compounds that contribute significantly to the normal functioning of living organisms. Although they are biosynthesized in living organisms, some are also obtained from the diet to meet the needs of organisms, which is why they are characterized as essential chemical compounds. The lack, or low concentrations, of vitamins in the human body causes the development of metabolic dysfunctions, and for this reason their daily intake with food or as supplements, as well as the control of their levels, are necessary. The determination of vitamins is mainly accomplished by using analytical methods, such as chromatographic, spectroscopic, and spectrometric methods, while studies are carried out to develop new and faster methodologies and techniques for their analysis such as electroanalytical methods, the most common of which are voltammetry methods. In this work, a study is reported that was carried out on the determination of vitamins using both electroanalytical techniques, the common significant of which is the voltammetry technique that has been developed in recent years. Specifically, the present review presents a detailed bibliographic survey including, but not limited to, both electrode surfaces that have been modified with nanomaterials and serve as (bio)sensors as well as electrochemical detectors applied in the determination of vitamins.