2022
DOI: 10.1109/tim.2022.3204940
|View full text |Cite
|
Sign up to set email alerts
|

A Novel Emotion-Aware Method Based on the Fusion of Textual Description of Speech, Body Movements, and Facial Expressions

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 59 publications
0
0
0
Order By: Relevance
“…MDF utilizes Euclidean distance measure to extract geometric features (3D joint position and distance), whereas MAF calculates angular features per joint with the rest of the joints under consideration. Thus, by concatenating the results of MDF and MAF, a feature vector of length 280 is obtained and inputted into the deep learning based bidirectional long short-term memory (Bi-LSTM) autoencoder framework [37] as elaborated in Figure 5. The BiLSTM framework, an enhanced version of simple LSTM, has shown its effectiveness when dealing with time-series sequential data [38].…”
Section: Feature Computationmentioning
confidence: 99%
“…MDF utilizes Euclidean distance measure to extract geometric features (3D joint position and distance), whereas MAF calculates angular features per joint with the rest of the joints under consideration. Thus, by concatenating the results of MDF and MAF, a feature vector of length 280 is obtained and inputted into the deep learning based bidirectional long short-term memory (Bi-LSTM) autoencoder framework [37] as elaborated in Figure 5. The BiLSTM framework, an enhanced version of simple LSTM, has shown its effectiveness when dealing with time-series sequential data [38].…”
Section: Feature Computationmentioning
confidence: 99%