In this paper, we consider a low-latency Mobile Edge Computing (MEC) network where multiple User Equipment (UE) wirelessly reports to a decision-making edge server. At the same time, the transmissions are operated with Finite Blocklength (FBL) codes to achieve low-latency transmission. We introduce the task of Age upon Decision (AuD) aimed at the timeliness of tasks used for decision-making, which highlights the timeliness of the information at decision-making moments. For the case in which dynamic task generation and random fading channels are considered, we provide a task AuD minimization design by jointly selecting UE and allocating blocklength. In particular, to solve the task AuD minimization problem, we transform the optimization problem to a Markov Decision Process problem and propose an Error Probability-Controlled Action-Masked Proximal Policy Optimization (EMPPO) algorithm. Via simulation, we show that the proposed design achieves a lower AuD than baseline methods across various network conditions, especially in scenarios with significant channel Signal-to-Noise Ratio (SNR) differences and low average SNR, which shows the robustness of EMPPO and its potential for real-time applications.