IntroductionThe performance of mobile devices is advancing with recent developments in information technology. Mobile devices, including smartphones, notebooks, netbooks, and tablets, have improved user efficiency by increasing mobility, providing the convenience of location independence, and making better use of leisure time through a variety of applications. The mobility of these devices is dependent on batteries, and batteries drain fast
AbstractThe recent advances in information technology for mobile devices have increased the work efficiency of users, the mobility of compact mobile devices, and the convenience of location independence. However, mobile devices have limited computing power and storage capacity, so mobile cloud computing is being researched to overcome these limitations in mobile devices. Mobile cloud computing is divided into two methods: the use of external cloud services and the use of mobile resource management without a cloud server (MRM), which integrates the computing and storage resources of nearby mobile devices. Because mobile devices can freely participate in MRM, it is critical to have authentication technology to determine the correctness of information regarding resources. Conventional technologies require strong authentication techniques because they have vulnerabilities that can easily be tampered with via man-in-the-middle (MITM) attacks. This paper proposes the Secure Authentication Management human-centric Scheme (SAMS) to authenticate mobile devices using blockchain for trusting resource information in the mobile devices that are participating in the MRM resource pool. The SAMS forms a blockchain based on the resource information of the subordinate client nodes around the master node in the MRM. Devices in the MRM that have not been authorized through the SAMS cannot access or falsify data. To verify the SAMS for application with MRM, it was tested for data falsification by a malicious user accessing the SAMS, and the results show that data falsification is impossible.