From the viewpoint of human resource management, personnel selection is one of the more important issues for enterprises in a high-level competitive environment. In general, many influence factors, quantitative and qualitative, affect the decision-making process of personnel selection. For considering qualitative factors, decision-makers cannot always easily judge the suitable degree of each applicant. Under this situation, this research proposes a systematic decision-making method based on computing with linguistic variables. First, unsuitable applicants are filtered by considering the quantitative information of each applicant. At this stage, technique for order of preference by similarity to ideal solution (TOPSIS) and entropy methods are aggregated to eliminate unsuitable applicants in accordance with their closeness coefficient values. Second, experts (or decision-makers) use different types of 2-tuple linguistic variables to express their opinions of suitable candidates with respect to qualitative criteria. At this stage, we consider different preference functions in the preference ranking organization method for enrichment evaluation (PROMETHEE) method to calculate the outranking index of each suitable candidate. Next, we aggregate the closeness coefficient and outranking index of each suitable applicant to determine the ranking order. In order to illustrate the computational processes, an example demonstrates the practicability of the two-phase personnel selection method. The benefit of the proposed method is as follows. (1) It reduces the time for reviewing and evaluating the huge numbers of applicants. (2) It avoids subjective judgment by experts to determine the weights of all criteria. Finally, conclusions and contributions are discussed at the end of this paper.